B-D-XYLOSIDASE from S. ruminantium (Lot I5IOOIa)

Recombinant

E-BXSR-IKU

(EC 3.2.I.37) xylan I,4-beta-xylosidase; 4-beta-D-xylan xylohydrolase
CAZy Family: GH43
CAS: 9025-53-0

PROPERTIES

I. ELECTROPHORETIC PURITY:

- Single band on SDS-gel electrophoresis (MW ~ 6I,900)
- One major band on isoelectric focusing (pl ~ 5.4)

2. SPECIFIC ACTIVITY:

$90 \mathrm{U} / \mathrm{mg}$ protein (on p-NP- β-D-xyloside) at pH 5.3 and $40^{\circ} \mathrm{C}$
$\sim 300 \mathrm{U} / \mathrm{mg}$ protein (on xylobiose) at pH 5.3 and $40^{\circ} \mathrm{C}$
One Unit One Unit of β-xylosidase activity is defined as the amount of enzyme required to release one μ mole of p-nitrophenol per minute from p-nitrophenyl- β-D-xylopyranoside (5 mM) in sodium succinate buffer (50 mM), pH 5.3 at $40^{\circ} \mathrm{C}$.
3. SPECIFICITY:

Hydrolysis of (I,4)- β-D-xylans and xylo-oligosaccharides to remove successive D-xylose residues from non-reducing termini.
4. RELATIVE RATES OF HYDROLYSIS OF SUBSTRATES:

Substrate	$\%$
$p-N P-\beta$-D-xyloside	100
$p-N P-\alpha-L-a r a b i n o f u r a n o s i d e ~$	~ 7.0
$p-N P-\beta$-L-arabinopyranoside	<0.01
$p-N P-\alpha-$-glucopyranoside	<0.01
$p-N P-\beta$-D-glucopyranoside	<0.01
$p-N P-\beta-D-g l u c u r o n i d e$	<0.01
$p-N P-\alpha-D-x y l o s i d e$	<0.01
$p-N P-\alpha-$-galactopyranoside	<0.01
$p-N P-\beta$-D-galactopyranoside	<0.01
$p-N P-$-D-mannopyranoside	<0.01
$p-N P-\beta$-D-mannopyranoside	<0.01

Action on pNP-substrates was determined at a final substrate concentration of 5 mM in sodium succinate buffer (50 mM), pH 5.3 at $40^{\circ} \mathrm{C}$.
5. PHYSICOCHEMICAL PROPERTIES:

Recommended conditions of use are at $\mathrm{pH} 6.0-7.5$ and up to $40^{\circ} \mathrm{C}$
pH Optima:
pH Stability:
Temperature Optima:
Temperature Stability:
5.0
5.0-9.0 (> 75\% control activity after 24 h at $4^{\circ} \mathrm{C}$)
$50^{\circ} \mathrm{C}(10 \mathrm{~min}$ reaction)
up to $50^{\circ} \mathrm{C}$ (> 75% control activity after 15 min incubation at temperature)
6. STORAGE CONDITIONS:

The enzyme is supplied as an ammonium sulphate suspension containing $0.02 \%(\mathrm{w} / \mathrm{v})$ sodium azide and should be stored at $4^{\circ} \mathrm{C}$. For assay, this enzyme should be diluted in sodium succinate buffer (50 mM), pH 5.3 containing $1 \mathrm{mg} / \mathrm{mL}$ BSA. Swirl to mix the enzyme immediately prior to use.

7. EXPERIMENTAL DATA:

8. REFERENCES:

Jordan, D. B., Li, X-L., Dunlap, C. A., Whitehead,T. R. \& Cotta, M. A. (2007). β-D-Xylosidase from Selenomonas ruminantium of Glycoside Hydrolase Family 43. Appl. Biochem. Biotechnol. I37-I40, 93-I 04.

Jordan, D. B. \& Li, X-L. (2007).Variation in relative substrate specificity of bifunctional β-D-xylosidase/ α-Larabinofuranosidase by single-site mutations: Roles of substrate distortion and recognition. Biochimica et Biophysica Acta I774, II92-II98.

Jordan, D. B., Li, X-L., Dunlap, C.A.,Whitehead,T. R. \& Cotta. M.A. (2007). Structure-function relationships of a catalytically efficient β-D-xylosidase. Appl. Biochem. Biotechnol. I4I, 5I-76.

Jordan, D. B. (2008). β-D-Xylosidase from Selenomonas ruminantium: Catalyzed Reactions with Natural and Artificial Substrates. Appl. Biochem. Biotechnol. I46, I37-I 49.

